Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis

نویسندگان

  • Xiaokun Liu
  • Heini M Grabherr
  • Roland Willmann
  • Dagmar Kolb
  • Frédéric Brunner
  • Ute Bertsche
  • Daniel Kühner
  • Mirita Franz-Wachtel
  • Bushra Amin
  • Georg Felix
  • Marc Ongena
  • Thorsten Nürnberger
  • Andrea A Gust
چکیده

Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activation in metazoans and plants. It is generally unknown how complex bacterial structures such as PGNs are perceived by plant pattern recognition receptors (PRRs) and whether host hydrolytic activities facilitate decomposition of bacterial matrices and generation of soluble PRR ligands. Here we show that Arabidopsis thaliana, upon bacterial infection or exposure to microbial patterns, produces a metazoan lysozyme-like hydrolase (lysozyme 1, LYS1). LYS1 activity releases soluble PGN fragments from insoluble bacterial cell walls and cleavage products are able to trigger responses typically associated with plant immunity. Importantly, LYS1 mutant genotypes exhibit super-susceptibility to bacterial infections similar to that observed on PGN receptor mutants. We propose that plants employ hydrolytic activities for the decomposition of complex bacterial structures, and that soluble pattern generation might aid PRR-mediated immune activation in cell layers adjacent to infection sites.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Conserved Peptide Pattern from a Widespread Microbial Virulence Factor Triggers Pattern-Induced Immunity in Arabidopsis

Microbe- or host damage-derived patterns mediate activation of pattern-triggered immunity (PTI) in plants. Microbial virulence factor (effector)-triggered immunity (ETI) constitutes a second layer of plant protection against microbial attack. Various necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) produced by bacterial, oomycete and fungal microbes are phytotoxic virulence ...

متن کامل

Vesicle trafficking in plant immune responses.

In plants, perception of pathogen-associated molecular patterns at the surface is the first line of defence in cellular immunity. This review summarizes recent evidence of the involvement of vesicle trafficking in the plant's immune response against pathogens. I first discuss aspects of ligand-stimulated receptor endocytosis. The best-characterized pattern-recognition receptor (PRR), FLS2, is a...

متن کامل

AvrBsT Acetylates Arabidopsis ACIP1, a Protein that Associates with Microtubules and Is Required for Immunity

Bacterial pathogens of plant and animals share a homologous group of virulence factors, referred to as the YopJ effector family, which are translocated by the type III secretion (T3S) system into host cells during infection. Recent work indicates that some of these effectors encode acetyltransferases that suppress host immunity. The YopJ-like protein AvrBsT is known to activate effector-trigger...

متن کامل

Arabidopsis PECTIN METHYLESTERASEs contribute to immunity against Pseudomonas syringae.

Pectins, major components of dicot cell walls, are synthesized in a heavily methylesterified form in the Golgi and are partially deesterified by pectin methylesterases (PMEs) upon export to the cell wall. PME activity is important for the virulence of the necrotrophic fungal pathogen Botrytis cinerea. Here, the roles of Arabidopsis PMEs in pattern-triggered immunity and immune responses to the ...

متن کامل

BIK1 function in plant growth and defense signaling.

Plant pathogens can be categorized based on their feeding habits, specifically whether they are biotrophic and feed off of living host tissues, or if they are necrotrophic and feed off of dead and decaying tissues. Not surprisingly, when attacked by pathogens with different feeding habits, plants employ different but overlapping defense strategies to limit pathogen growth and disease developmen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014